Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37965202

RESUMO

In hereditary papillary renal cell carcinoma (HPRCC), the MET receptor tyrosine kinase (RTK) mutations recorded to date are located in the kinase domain and lead to constitutive MET activation. This contrasts with MET mutations recently identified in non-small cell lung cancer (NSCLC), which lead to exon 14 skipping and deletion of a regulatory domain: in this latter case, the mutated receptor still requires ligand stimulation. Sequencing of MET in samples from 158 HPRCC and 2808 NSCLC patients revealed ten uncharacterized mutations. Four of these, all found in HPRCC and leading to amino acid substitutions in the N-lobe of the MET kinase, proved able to induce cell transformation, further enhanced by HGF stimulation: His1086Leu, Ile1102Thr, Leu1130Ser, and Cis1125Gly. Similar to the variant resulting in MET exon14 skipping, the two N-lobe MET variants His1086Leu, Ile1102Thr further characterized were found to require stimulation by HGF in order to strongly activate downstream signaling pathways and epithelial cell motility. The Ile1102Thr mutation displayed also transforming potential, promoting tumor growth in a xenograft model. In addition, the N-lobe-mutated MET variants were found to trigger a common HGF-stimulation-dependent transcriptional program, consistent with an observed increase in cell motility and invasion. Altogether, this functional characterization revealed that N-lobe variants still require ligand stimulation, in contrast to other RTK variants. This suggests that HGF expression in the tumor microenvironment is important for tumor growth. The sensitivity of these variants to MET TKIs opens the way for use of targeted therapies for patients harboring the corresponding mutations.

2.
FEBS Lett ; 597(18): 2301-2315, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37468447

RESUMO

MET is a receptor tyrosine kinase that is activated in many cancers through various mechanisms. MET exon 14 (Ex14) skipping occurs in 3% of nonsmall cell lung tumors. However, the contribution of the regulatory sites lost upon this skipping, which include a phosphorylated serine (S985) and a binding site for the E3 ubiquitin ligase CBL (Y1003), remains elusive. Sequencing of 2808 lung tumors revealed 71 mutations leading to MET exon 14 skipping and three mutations affecting Y1003 or S985. In addition, MET exon 14 skipping and MET Y1003F induced similar transcriptional programs, increased the activation of downstream signaling pathways, and increased cell mobility. Therefore, the MET Y1003F mutation is able to fully recapitulate responses induced by MET exon 14 skipping, suggesting that loss of the CBL binding site is the main contributor of cell transformation induced by MET Ex14 mutations.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-met , Humanos , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias Pulmonares/genética , Mutação , Éxons/genética , Sítios de Ligação , Ubiquitinas/genética , Ligases/metabolismo
3.
Mol Oncol ; 17(11): 2257-2274, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36799689

RESUMO

Exon skipping mutations of the MET receptor tyrosine kinase (METex14), increasingly reported in cancers, occur in 3-4% of non-small-cell lung cancer (NSCLC). Only 50% of patients have a beneficial response to treatment with MET-tyrosine kinase inhibitors (TKIs), underlying the need to understand the mechanism of METex14 oncogenicity and sensitivity to TKIs. Whether METex14 is a driver mutation and whether it requires hepatocyte growth factor (HGF) for its oncogenicity in a range of in vitro functions and in vivo has not been fully elucidated from previous preclinical models. Using CRISPR/Cas9, we developed a METex14/WT isogenic model in nontransformed human lung cells and report that the METex14 single alteration was sufficient to drive MET-dependent in vitro anchorage-independent survival and motility and in vivo tumorigenesis, sensitising tumours to MET-TKIs. However, we also show that human HGF (hHGF) is required, as demonstrated in vivo using a humanised HGF knock-in strain of mice and further detected in tumour cells of METex14 NSCLC patient samples. Our results also suggest that METex14 oncogenicity is not a consequence of an escape from degradation in our cell model. Thus, we developed a valuable model for preclinical studies and present results that have potential clinical implication.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Éxons , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Pulmonares/patologia , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Camundongos
4.
Front Immunol ; 13: 904631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844491

RESUMO

Autoantibodies (Aabs) are frequent in systemic sclerosis (SSc). Although recognized as potent biomarkers, their pathogenic role is debated. This study explored the effect of purified immunoglobulin G (IgG) from SSc patients on protein and mRNA expression of dermal fibroblasts (FBs) using an innovative multi-omics approach. Dermal FBs were cultured in the presence of sera or purified IgG from patients with diffuse cutaneous SSc (dcSSc), limited cutaneous SSc or healthy controls (HCs). The FB proteome and transcriptome were explored using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and microarray assays, respectively. Proteomic analysis identified 3,310 proteins. SSc sera and purified IgG induced singular protein profile patterns. These FB proteome changes depended on the Aab serotype, with a singular effect observed with purified IgG from anti-topoisomerase-I autoantibody (ATA) positive patients compared to HC or other SSc serotypes. IgG from ATA positive SSc patients induced enrichment in proteins involved in focal adhesion, cadherin binding, cytosolic part, or lytic vacuole. Multi-omics analysis was performed in two ways: first by restricting the analysis of the transcriptomic data to differentially expressed proteins; and secondly, by performing a global statistical analysis integrating proteomics and transcriptomics. Transcriptomic analysis distinguished 764 differentially expressed genes and revealed that IgG from dcSSc can induce extracellular matrix (ECM) remodeling changes in gene expression profiles in FB. Global statistical analysis integrating proteomics and transcriptomics confirmed that IgG from SSc can induce ECM remodeling and activate FB profiles. This effect depended on the serotype of the patient, suggesting that SSc Aab might play a pathogenic role in some SSc subsets.


Assuntos
Imunoglobulina G , Escleroderma Sistêmico , Autoanticorpos , Cromatografia Líquida , Fibroblastos/metabolismo , Humanos , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
5.
Commun Biol ; 3(1): 101, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139796

RESUMO

The molecular mechanisms underlying caudal-to-rostral progression of Lewy body pathology in Parkinson's disease remain poorly understood. Here, we identified transcriptomic signatures across brain regions involved in Braak Lewy body stages in non-neurological adults from the Allen Human Brain Atlas. Among the genes that are indicative of regional vulnerability, we found known genetic risk factors for Parkinson's disease: SCARB2, ELOVL7, SH3GL2, SNCA, BAP1, and ZNF184. Results were confirmed in two datasets of non-neurological subjects, while in two datasets of Parkinson's disease patients we found altered expression patterns. Co-expression analysis across vulnerable regions identified a module enriched for genes associated with dopamine synthesis and microglia, and another module related to the immune system, blood-oxygen transport, and endothelial cells. Both were highly expressed in regions involved in the preclinical stages of the disease. Finally, alterations in genes underlying these region-specific functions may contribute to the selective regional vulnerability in Parkinson's disease brains.


Assuntos
Encéfalo/patologia , Perfilação da Expressão Gênica , Corpos de Lewy/genética , Corpos de Lewy/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Bases de Dados Genéticas , Progressão da Doença , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Medição de Risco , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...